
Arduino Sensors Workshop
Developed by Mark Webster, Ousema Zayati, Conner Sheeran

In this workshop learn to identify several types of sensors and to use them in
microcontroller projects.

Background
Sensors are devices that convert measurements of real world data into electrical signals
that can read by a microcontroller such as an Arduino. Code on the microcontroller
interprets the signals and takes an action such as storing the data, transmitting it by
serial or RF to another computer, or turns on motors, alarms, or triggers other devices
to do something.

Sensors can measure: temperature, humidity, barametric pressure, GPS coordinates,
moisture, infrared light, heart beat, brainwaves, magnetic fields, CO2 levels, distance,
movement, or countless other specialized real world data. (The SCC Makerspace
electronics area has many examples of sensors.)
[Insert photo here of many types of sensor]

Sensors produce an analog voltage, or a series of digital pulses. Arduino Uno’s read
analog voltages (0 to 5 volts) on the six pins A0 to A5. It can read digital values (0 or 1)
on pins 2 to 13.

Some sensors are a variable resistance which is converted to a voltage by putting the
sensor into a resistor divider circuit between 0 and 5 volts.

A few sensors return a pulse on a digital pin but the length of the pulse encodes
information (PWM – pulse width modulation). PWM can be accessed or written on the
pins 3,5,6,9,10, and 11.

Digital sensors usually work with either the I2C or SPI protocols for communication. The
Arduino library “wire.h” is used for I2C devices. The Arduino “SPI.h” library is used for
SPI devices.

Analog Input
An Arduino has several input pins with an AD (analog to digital) converter. The Arduino has a 10
bit converter that maps a voltage from 0 - 5V to an integer between 0 - 1023.
When a sensor has an analog voltage output, the Arduino program reads the voltage and
applies some formula to convert it to the value being measured.

Analog sensors are perhaps the easiest to implement. However, their resolution is limited and
often there is jitter in the values. Jitter can be reduced with external electronic filters, or digital
filters in the software.

Exercise 1: TMP36 Temperature Sensor
The TMP36 is an analog sensor that converts temperature into an analog voltage. The
TMP36 has three pins, ground, readout, and VCC. The Arduino reads an analog
voltage as a number from 0 to 1023. First convert that to a voltage between 0 – 5000
mv. Then convert that reading to degrees where the resolution is 10 mv per degree C,
and the 0 C offset is 500 mv.

This sketch reads the sensor output on analog pin A0, and converts to fahrenheit. This
sketch was originally copied from adafruit.com and modified. The temperature data is
sent to a computer using the serial library to display in the IDE’s serial monitor.

// Makerspace Arduino Sensors workshop TMP36

//TMP36 Pin Variables
int sensorPin = 0; //the analog pin the TMP36's Vout (sense) pin is connected to A0
 //the resolution is 10 mV / degree centigrade with a
 //500 mV offset to allow for negative temperatures
float voltage;
float temperatureC;
float temperatureF;

void setup()

{
 Serial.begin(9600); //Start serial interface
}

void loop() // run over and over again
{
 //getting the voltage reading from the temperature sensor
 int reading = analogRead(sensorPin);

 // converting that reading to voltage, assuming 5.0 volts on an Arduino Uno
 voltage = reading * 5.0/ 1024.0;

 // now print out the temperature in celsius
 temperatureC = (voltage - 0.5) * 100 ; //converting from 10 mv per degree wit h500 mV
offset
 //to degrees ((voltage - 500mV) times 100)
 Serial.print(temperatureC);
 Serial.println(" degrees C");

 // now convert to Fahrenheit
 temperatureF = (temperatureC * 9.0 / 5.0) + 32.0;
 Serial.print(temperatureF);
Serial.println(" degrees F");

 delay(1000); //waiting a second
}

Digital input
An Arduino has many pins that can read a digital signal (On or Off, 1 or 0). Some
sensors send a string of digital pulses as output which the Arduino software can convert
to a value. Sometimes the sensor value is the time between a trigger on one pin and
another input pin going high.

Exercise 2: HC-SR04 Distance Sensor

The HC-SR04 sensor works by sending out a pulse of ultrasonic sound (40 khz) and
timing how long it takes for an echo to return. This is similar to how bats or dolphins
measure distance. The time is encoded in a pulse length read on a digital pin.

To calculate the distance one must know the speed of sound in air. The speed of sound
changes with temperature and humidity, so for best accuracy one should measure the
temperature and humidity along with the echo time.

Distance is the simple equation: distance = speed ×time

The equations for speed of sound in air (in meters per second) is approximately:

s = 331.4 + (0.606 ×T) + (0.0124 ×H)

331.4 is the speed of sound in m/s at 0° C at 0 % humidity
T is temperature in ° C, H is % relative humidity.

For example, at 24° C and 25% humidity (typical Sacramento fall weather)

s = 331.4 + (0.606)(24) + (0.0125)(25) = 346.26 m/s

The HC-SR04 has a trigger pin which sends a pulse when set high for a 10
microseconds. The time for the pulse to reach the object and return is found by reading
the length of a digital pulse in microseconds. In this simple code the temperature and
humidity are ignored. The speed of sound in m/s is converted to cm/ microsecond. For
example, a typical 344 m/s becomes 0.0344 cm/microsecond.
The duration of the echo is divide by 2 to account for the round trip. The valid range for
the HC-SR04 sensor range is 2 to 400 cm, so any readings outside of that are ignored.
For better accuracy an individual sensor can be calibrated and an adjustment added to
the distance. In this sketch the adjustment is set to 0.0 cm.
In this sketch the trigger pin on the HC-SR04 is connected to digital pin 9, and the echo
pin is connected to digital pin 10. The serial monitor (Serial library) is used to send the
calculated distance back to another computer.
This sketch was copied from www.circuitbasics.com and modified.

http://www.circuitbasics.com/

// Maker Arduino Sensor Workshop DHT11

// Define variables that don’t change
#define trigPin 9
#define echoPin 10
#define distanceAdjust 0.0

// Setup at the start of the program
void setup() {
 Serial.begin (9600);
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
}

// Main loop which runs forever
void loop() {
 // Local variale declarations
 float duration, distance;

// Send out an ultrasonic pulse, 10 microseconds long
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 // Find duration of the echo
 duration = pulseIn(echoPin, HIGH);

 // Calculate the distance from pulse length
 distance = (duration / 2) * 0.0344 + distanceAdjust;

 // If out of sensors bounds, give error
 if (distance >= 400 || distance <= 2){
 Serial.print("Distance = ");
 Serial.println("Out of range");
 } else {
 // valid distance
 Serial.print("Distance = ");
 Serial.print(distance);
 Serial.println(" cm");
 }
 delay(800);
} // end of main loop

Sensor With Library
The most complex and flexible sensors have a complicated set of signals read on a digital input
pin. Usually a library that some other person has written is used to hide the complexity of
interpreting the signal pattern and turning it into a meaningful sensor value.
The challenge with library based sensors is there may be different libraries on the Internet
designed to work with older versions of the sensor. How to use a library found on the Internet
can be challenging since example programs may work with an older version of the library. The
challenge is to find a library and example program that work together. In desperate cases, the
programmer must read the C++ code of the library and figure out how it works.

Exercise 3: DHT11 Temperature and Humidity Sensor

The DHT11 sensor converts the data measurements to a digital signal. The DHT11
sends out 40 bits (5 bytes) which contain the temperature and humidity. Fortunately,
dedicated open source programmers have written a library called “dht.h” which does all
the messy work of reading and converting the 40 bits to integer values stored in the
object members dht11.humidity, dht11.temperature.
The source code for dht.h can be found on github.com, although it usually isn’t needed.
The library must be downloaded and installed into the Arduino IDE before using this
sensor.
The DHT11 sensor returns temperature as a whole number between 0 and 50 degrees
Celsius. The humidity is a whole number between 0 and 100% relative humidity.

There are 3 pin and 4 pin DHT11 sensors. The newer version of the sensor is DHT22.
Since the 3 pin sensors (attached to a circuit board) are less expensive and more widely
used, they are more common in Makerspaces and sensor collections.

The 3 pins are Vcc connected to +5 volts on the Arduino, GND connected to ground on
the Arduino, and a signal pin which is connected to a digital pin on the Arduino. Ignore
older examples on the web that connect the signal pin to analog A0.
Which of the 3 pins are Vcc, Gnd and signal can vary between different versions of the
DHT11 sensor, so read the pinouts before connecting to the Arduino.

In the Arduino IDE install the DHT library from Tools->Manage Libraries. Search for
DHT and select the DHT Sensor library.

The DHT11 on a circuit board can be inserted into a breadboard for convenience. Then
run jumper wires to the Arduino.
(Fritzing goes here)

Be sure to install any dependencies too when prompted.

It is possible other students have downloaded DHT libraries from the internet and
installed them in the Documents->Arduino->libraries folder. These other libraries must
be removed before the sketch will compile and run correctly.

Once the DHT sensor library is installed go to File -> examples -> DHT Sensor and pick
the DHTtester sketch.

Change the DHTPIN to whatever digital signal pin you used. Then change the #define
DHTTYPE to DHT11. (Comment out DHT22 and uncomment DHT11).
Save the file to a new sketch name, then compile and upload the sketch to the Arduino
+ DHT11 on a breadboard.

Open the Tools->Serial Monitor to read the output from the Arduino + DHT11

